Likelihood Tilting

Christopher G. Small
University of Waterloo

Mailing Address:
Department of Statistics and Actuarial Science
University of Waterloo, Waterloo, Ontario, Canada.

E-mail:
cgsmall@uwaterloo.ca
Tilted densities.

- Let $f(x)$ be a probability density and $w(x)$ a nonnegative weight function. We define the w-tilted version of f to be the density
 \[f_w(x) = \frac{w(x) f(x)}{\int w(x) f(x) \, dx} \]
 \[= \frac{w(x) f(x)}{E_f[w(X)]} \]
 provided the denominator is finite.
Length-biased Sampling

In length-biased sampling the weight function is $w(x) = x$.
Area-biased Sampling

• A polygon chosen at random from a population of polygons has area A

 – density $f(a)$.

• Selecting a polygon by throwing a random dart at the region produces a random polygon with area A

 – density proportional to $a f(a)$.
Difference-Biased Sampling

- Estimate the distribution of velocities of cars driving along a road.
- We observe the cars on a fixed length of road at a given time:
 - density $f(x)$.
- Moving at velocity a along the road for a fixed time period we observe cars that we pass or which pass us:
 - density proportional to $|x - a| f(x)$.
Two exponential tilts of a Beta(2,2) density:

\[f(x; \theta) = \exp[\theta x - K(\theta)] f(x) \]

where \(K(\theta) \) is the cumulant generating function of \(f(x) \).

- The best known tilt is the *exponential tilt*,

- The exponential tilt can be used for
 - The embedding of \(f(x) \) in a linear exponential family;
 - The derivation of the saddlepoint approximation for \(f(x) \) as a tilted Edgeworth expansion.
• It will be useful to regard a particular tilting operation as an operator on an appropriate space of density functions:

\[T_w : f \mapsto f_w \]

• Interpreting a tilt as an operator is consistent with the principle that a tilt is often the result of a transformation in the physical context of the model or a transformation in the sampling mechanism.

By defining parameters with such operators, we interpret parameters \textit{structurally}, separating them from the error distributions associated with “random noise.”

This takes us away from the Fisherian subordination of a parameter as the \textit{index} of a family of distributions.
Tilted Expectations and Likelihood Tilts

• Suppose $w(x)$ is a tilting function that is standardised so that

$$E_f[w(X)] = 1.$$

The tilted expectation of a given function $h(x)$ is

$$E_{f_w}[h(X)] = E_f[w(X)h(X)].$$

• This is used for Monte Carlo studies when we wish to approximate the expectation $E_{f_w}[h(X)]$ but cannot generate random values from f_w. The density f is usually chosen so that simulation from f is feasible and the variance of $w(X)h(X)$ is not very high.

• For a parametric model with a family of densities $f(x; \theta)$, the tilting function is seen to be a likelihood ratio, and the tilting operation becomes a likelihood tilt. With parametric models it is natural to tilt functions $h(\theta, X)$ of both θ and X:

$$E_{\theta'}[h(\theta, X)] = E_\theta[\Lambda h(\theta, X)]$$

where Λ is the likelihood ratio

$$\Lambda = \frac{L(\theta')}{L(\theta)}.$$

• Note that Λ is automatically standardised because

$$E_\theta(\Lambda) = \int \frac{L(\theta')}{L(\theta)} L(\theta) = \int L(\theta') = 1.$$
• Also of interest is the centred likelihood ratio

$$\bar{\Lambda} = \frac{L(\theta')}{L(\theta)} - 1,$$

which is an unbiased estimating function in the sense that

$$E_\theta [\bar{\Lambda}] = 0.$$

• A limiting case of $\bar{\Lambda}$ occurs when $\theta' \to \theta$, and the centred likelihood ratio is renormalised:

$$\frac{1}{\theta' - \theta} \bar{\Lambda} \to U(\theta, X)$$

$$= \frac{\partial}{\partial \theta} \log L(\theta, X)$$

which is the score function.

• Tilting an expectation with respect to the score yields

$$E_\theta [U(\theta, X)h(\theta, X)] = \int h(\theta) \frac{\partial}{\partial \theta} \frac{L(\theta)}{L(\theta)} L(\theta)$$

$$= \int h(\theta, x) \frac{\partial}{\partial \theta} L(\theta)$$

$$= \frac{\partial}{\partial \theta} \int h(\theta, x)L(\theta) - \int \frac{\partial}{\partial \theta} h(\theta, x) L(\theta)$$

$$= \frac{\partial}{\partial \theta} E_\theta[h(\theta, X)] - E_\theta \left[\frac{\partial}{\partial \theta} h(\theta, X) \right]$$

• An important special case of this formula occurs when $E_\theta[h(\theta, X)]$ is functionally independent of θ. Then

$$E_\theta [U(\theta, X)h(\theta, X)] = -E_\theta \left[\frac{\partial}{\partial \theta} h(\theta, X) \right]$$

$$= \left\{ \frac{\partial}{\partial \theta'} E_{\theta'}[h(\theta, X)] \right\}_{\theta' = \theta}$$
Likelihood Functionals

- Associated with each likelihood ratio is a **likelihood functional**. Let \mathcal{H} denote the class of all functions $h(\theta, X)$ such that

$$E_\theta[h(\theta, X)]$$

is functionally independent of θ;

and

$$E_\theta \left[h^2(\theta, X) \right] < \infty.$$

Then \mathcal{H} is a complete inner product space.

- Suppose also that $E_\theta[\Lambda^2] < \infty$. We can consider Λ to be a function of θ, and think of θ' as a subscript: $\Lambda = \Lambda_{\theta'}(\theta)$. Since $E_\theta[\Lambda] = 1$, the likelihood ratio Λ is an element of \mathcal{H}.

- Then we define the **likelihood functional**

$$\Lambda^* : h \mapsto E_{\theta'}[h(\theta, X)] = E_\theta \left[\Lambda h(\theta, X) \right].$$

- Notes on this functional:

 - The mapping $\Lambda \mapsto \Lambda^*$ maps likelihood ratios in \mathcal{H} to elements of its dual space \mathcal{H}^*.

 - Λ^* is a continuous (i.e., bounded) linear functional, with norm

$$||\Lambda^*|| = ||\Lambda|| = \sqrt{E_\theta[\Lambda^2]}.$$
The likelihood functionals have some advantages over likelihood ratios. In particular, the likelihood functionals generalise to settings where likelihood ratios do not exist.

- Suppose \mathcal{H}_0 is a closed subspace of \mathcal{H}.
- Then the functional Λ^* will be defined on \mathcal{H}_0 even if Λ is not an element of \mathcal{H}_0.
- The norm of the restriction of Λ^* to \mathcal{H}_0 will no longer be $||\Lambda||$ but will be $||\tilde{\Lambda}||$, where $\tilde{\Lambda}$ is the projection of Λ into \mathcal{H}_0.
- Within \mathcal{H}_0, the function $\tilde{\Lambda}$ therefore acts as an analog of a likelihood ratio, serving as a substitute for the latter in the Riesz Representation Theorem.
Application to Semiparametrics

- Let X_j, $j = 1, \ldots, n$ be independent, with means $\mu_j(\theta)$ and variances $\sigma_j^2(\theta)$ respectively.

- Suppose \mathcal{H}_0 consists of all functions of the form

$$h_{j_1 \ldots j_k}(\theta) = \prod_{i=1}^k [X_{j_i} - \mu_{j_i}(\theta)]$$

where the product is taken over any subset of indices, together with all linear combinations of such functions and the function $h_0 \equiv 1$.

- Let $\Lambda = \Lambda_{\theta}(\theta)$ be a likelihood ratio.

- The projection of Λ into the space of multiples of $h_{j_1 \ldots j_k}$ is

$$\frac{\langle \Lambda, h_{j_1 \ldots j_k} \rangle}{\| h_{j_1 \ldots j_k} \|^2} h_{j_1 \ldots j_k}(\theta) = \prod_{i=1}^k \left[\frac{\mu_{j_i}(\theta') - \mu_{j_i}(\theta)}{\sigma_{j_i}^2(\theta)} \right] h_{j_1 \ldots j_k}(\theta).$$

- As the basis function $h_{j_1 \ldots j_k}$ are all orthogonal, the projection of Λ into the space \mathcal{H}_0 is found by adding up these components, yielding:

$$\tilde{\Lambda} = 1 + \sum_{j_1, \ldots, j_k} \left\{ \prod_{i=1}^k \left[\frac{\mu_{j_i}(\theta') - \mu_{j_i}(\theta)}{\sigma_{j_i}^2(\theta)} \right] h_{j_1 \ldots j_k}(\theta) \right\}.$$

where the sum is over all subsets of indices.
But this expression is simply the expansion of

\[\tilde{\Lambda}_{\theta'}(\theta) = \prod_{j=1}^{n} \left\{ 1 + \frac{\mu_j(\theta') - \mu_j(\theta)}{\sigma_j^2(\theta)} [X_j - \mu_j(\theta)] \right\}. \]

which is the Riesz representation of the likelihood functional in \(\mathcal{H}_0 \).

Note that as \(\theta' \to \theta \),

\[\frac{1}{\theta' - \theta} \tilde{\Lambda}_{\theta'}(\theta) \to \sum_{j=1}^{n} \frac{\partial}{\partial \theta} \mu_j(\theta) \frac{\partial}{\partial \theta} \mu_j(\theta) [X_j - \mu_j(\theta)], \]

which is the quasi-score.

So the quasi-score is the Riesz representation of the score functional in \(\mathcal{H}_0 \).

This \textit{projected likelihood ratio} behaves like a likelihood ratio in some respects, except that it can go negative – typically when \(\theta' \) is not in a \(n^{-1/2} \)-neighbourhood of \(\theta \).

The function \(\tilde{\Lambda} \) does not directly define a projected likelihood for the parameter space since we cannot write

\[\tilde{L}(\theta') = \tilde{\Lambda}_{\theta'}(\theta) \tilde{L}(\theta). \]

However, if \(\hat{\theta} \) is the unique quasi-MLE, then

\[\tilde{L}(\theta) = \tilde{\Lambda}_{\theta}(\hat{\theta}) \]

provides a consistent support function on the parameter space that is maximised at \(\hat{\theta} \) where \(\tilde{L}(\hat{\theta}) = 1 \).
• To illustrate this function, consider the IID model where $E(X) = \theta$ and $\text{Var}(X) = 1$. Then $\hat{\theta} = \bar{X}$. So

$$\bar{L}(\theta) = \prod_{j=1}^{n} \{1 + (\theta - \bar{X})(X_j - \bar{X})\}.$$

Expanding we get

$$\bar{L}(\theta) = 1 + (\theta - \bar{X}) \sum_{j=1}^{n} (X_j - \bar{X})$$

$$+ (\theta - \bar{X})^2 \sum_{i \neq j} (X_i - \bar{X})(X_j - \bar{X}) + \cdots$$

$$= 1 - (\theta - \bar{X})^2 (n - 1)S^2 + \cdots$$

• So a “likelihood” region for θ has the form $\bar{L}(\theta) \geq a$, or

$$\bar{X} - \sqrt{\frac{1-a}{n-1}}S^{-1} \leq \theta \leq \bar{X} + \sqrt{\frac{1-a}{n-1}}S^{-1},$$

approximately.

• Note that as the sample variance increases, the interval becomes smaller. This is typical of platykurtic location models. (We are not assuming normality here.)

![Platykurtic density](image1.png) ![Leptokurtic density](image2.png)

Platykurtic density Leptokurtic density
• When will $\tilde{\Lambda}$ be a true likelihood ratio?

• For this, we must have

$$f(x; \theta') = f(x; \theta) \left\{ 1 + \frac{\mu' - \mu}{\sigma^2} [x - \mu] \right\}$$

• If there is a member $f(x)$ of this family such that $\int x f(x) dx = 0$, then we can write

$$f(x; \theta) = f(x) + a(\theta) x f(x)$$

where we must have $1 + x a(\theta) \geq 0$ on the support of f.

• So $f(x; \theta)$ is a mixture of a density f and a signed-length biased version of f.

• Example:
Likelihood Functionals using Edgeworth Expansions

- It is also possible to express likelihood functionals using generalised Edgeworth expansions.

- Let $f(x; \theta)$ be a family of densities, with cumulant generating function $K(t; \theta)$, respectively. We write

$$K(t; \theta') - K(t; \theta) = \sum_{j=1}^{\infty} \frac{\kappa_j(\theta') - \kappa_j(\theta)}{j!} t^j.$$

So the MGF of $f(x; \theta')$ is

$$M(t; \theta') = \exp \left[K(t; \theta') - K(t; \theta) \right] M(t; \theta)$$

$$= \exp \left[\sum_{j=1}^{\infty} \frac{\kappa_j(\theta') - \kappa_j(\theta)}{j!} t^j \right] M(t; \theta)$$

- Doing a Taylor expansion on the exponential (Kendall & Stuart, McCullagh 1987, Kolassa 1994), we have

$$\exp \left[\sum_{j=1}^{\infty} \frac{\kappa_j(\theta') - \kappa_j(\theta)}{j!} t^j \right] = \sum_{k=0}^{\infty} \frac{\mu_j^*(\theta', \theta)}{j!} t^j,$$

where the $\mu_j^*(\theta', \theta)$ are called pseudo-moments. So

$$M(t; \theta') = \sum_{k=0}^{\infty} \frac{\mu_j^*(\theta', \theta)}{j!} \left\{ t^j M(t; \theta) \right\}$$
• Taking the inverse Laplace transform of this equation, and using the fact that \(t^j M(t; \theta) \) inverts to \((-d/dx)^j f(x; \theta)\), we get
\[
f(x; \theta') = \sum_{k=0}^{\infty} \frac{\mu_k^*(\theta', \theta)}{j!} \left\{ \left(-\frac{d}{dx} \right)^j f(x; \theta) \right\}.
\]
• Wrapping the exponential back up, we have
\[
f(x; \theta') = \exp \left[\sum_{j=1}^{\infty} \frac{\kappa_j(\theta') - \kappa_j(\theta)}{j!} \left(-\frac{d}{dx} \right)^j \right] f(x; \theta).
\]
• So we can formally represent the likelihood functional as
\[
\Lambda^* = \exp \left[\sum_{j=1}^{\infty} \frac{\kappa_j(\theta') - \kappa_j(\theta)}{j!} \left(-\frac{d}{dx} \right)^j \right] f(x; \theta).
\]
• This formula allows us to write likelihood functionals in terms of the cumulants of the model – in the spirit of semiparametrics – without explicitly using density functions.
• To illustrate this formula, consider \(X \sim N(0, \theta) \). Then \(\kappa_2(\theta) = \theta \) and \(\kappa_j(\theta) = 0 \) for all \(j \neq 2 \). So
\[
\Lambda^* = \exp \left(\frac{\theta' - \theta}{2} \frac{d^2}{dx^2} \right).
\]
In the limit as \(\theta' \to \theta \), the score functional is found to be
\[
\frac{1}{2} \frac{d^2}{dx^2}
\]
which is easily recognised as the Laplacian operator for the variation coefficient of the normal distribution – i.e., the diffusion coefficient in the heat equation, etc.