PUTNAM TRAINING PROBLEMS 2000.5 Rooting for Answers to Algebraic Appetizers

- 1. Let $f(x) = x^3 3x + 1$, where x is real. find the number of distinct real roots of the equation f(f(x)) = 0.
- 2. Let a_1, \ldots, a_n be real numbers, not all zero. Prove that the equation

$$\sqrt{1+a_1\,x}+\dots+\sqrt{1+a_n\,x}=n$$

has at most one nonzero real root.

3. Find all real numbers x such that

$$x |x| x |x| || = 88.$$

- 4. Two positive integers are written on the board. The following operation is repeated: if a < b are the numbers on the board, then a is erased and ab/(b-a) is written in its place. At some point the numbers on the board are found to be equal. Prove that again they are positive integers.
- 5. The numbers 19 and 98 are written on a board. Each minute, each number is either incremented by 1 or squared. Is it possible for the numbers to become identical at some time?
- 6. A binary operation * on real numbers has the property that (a*b)*c = a+b+c. Prove that a*b = a+b.
- 7. Let P be the set of all points in \mathbb{R}^n with rational coordinates. For $A, B \in P$, one can move from A to B if the distance AB is 1. Prove that every point in P can be reached from every other point in P by a finite sequence of moves if and only if $n \geq 5$.